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Pseudo-merohedral twinning. In addition to the cases of true merohedry
described above, specific axis ratios can allow twinning, for example in addi-
tion in orthorhombic crystals with a = b (appearing tetragonal) or in monoclinic
crystals with B ~ 90.0° (appearing orthorhombic). In such cases of pseudo-mero-
hedral twinning the apparent higher symmetry implies that the unit cells will
appear too small (too many symmetry related copies) to harbor a monomeric
motif, When multiple molecules make up the motif, the distinction based on the
Matthews probabilities (Chapter 11) is not so clear cut, because it might alterna-
tively be possible that an oligomer axis coincides with a crystallographic axis.

Pseudo-symmetry. As a general rule, twinning analysis becomes more compli-
cated when twinning coincides with translational NCS* or pseudo-symmetry.
In the case of pseudo-translational symmetry, the intensity distribution tends
toward bimodal because one subset of reflections becomes systematically
enhanced and the other systematically weakened. The trend toward bimodal
shape in turn makes the whole intensity distribution broader. This is essentially
the opposite effect of merohedral twinning and manifests itself in the twinning
analysis (Table 8-3) as negative twinning. The presence of a combination of
compensating twinning and translational pseudo-symmetry can lead to near-
normal intensity distribution statistics and obscure the detection of twinning.

Intensity statistics for twinned crystals

We can define a statistic H that is a function of the twinning fraction & and
which relates the measured diffraction intensities (or the square of the structure
amplitudes) as follows:
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where 1,,,(h,) and /,,, (h,) are the observed intensities resulting from a mixture

of the true twin related reflections I(h,) and I(h,) in a hemihedral twinning case.
With the corresponding fractions written as

Ly, () =(1-a)I(h,)+al(h,) and I, (h;) = (@)I(h,)+(1-a)I(h,) (8-3)
we can solve for the true intensities I(h,) and I(h,) the following linear system:
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and I(h,) =

Equations 8-4 allow the recovery of the true intensities from observed twin
related pairs provided: (i) we know the twinning operator (otherwise we cannot
form the pairs of related reflections); (ii) we know the twinning fraction ¢; and
(iii) that the twinning fraction is not exactly 0.5 (where Equations 8-4 become
singular) which is the case for perfect merohedral twinning.

The twinning fraction can be recovered from analysis of the cumulative rob-
ability distribution N(H) for the statistic H from the pairs of twin related jixtensi-
ties.*2 N(H) takes the following algebraic forrgs:

N(H)=cos™ [H /2a - 1)]/ 7w (centric)
NH)=[1+H/(1-2a)]/2 (acentric) | () = 4 / (A —ng(g_ﬁ)

The centric function has the sigmoid shape of the arccosine and the acentric
function is linear in H. Both functions can be computed and plotted for a
number of discrete values for the twinning fraction ¢ for centric and acentric
reflections and compared with the actually observed data. In general there are
not many centric reflections, so the acentric plots are more meaningful (Figure
8-19). The theoretical experimental distribution that is followed most closely by
the experimental data (normalized in resolution shells) provides an estimate of
the twinning fraction. This was the first useful statistical procedure for analyzing
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merohedral twinning in macromolecular data, derived by Todd Yeates* extend-
ing earlier work. Once « is known, the data can be de-twinned (the fractions
computed and combined) and treated as normal.

For perfect merohedral twinning, where the expressions (8-5 and 8-6) derived
above for Hbecome singular, a number of additional tests based on the moments
of E (normalized structure factors) or Z (normalized intensities, Z = I/(I)) can
be inspected. The CCP4 program TRUNCATE, for example, provides such plots,
where the moments are plotted in resolution shells. Their expectation values are
given in Table 8-3.

The drawback of the above method is that to determine which pairs of reflec-
tions are related, one still needs to know the twin operator, that is, try the pos-
sible ones, given the apparent space group. The expressions for the cumulative
probability distributions of H again become singular for & — 0.5, that is, for
perfect hemihedral twinning.

Padilla and Yeates* have thus modified the above statistic by considering pairs
of locally related reflections instead of twin related reflections. The statistic L is
more robust in the presence of anisotropic diffraction and pseudo-centering
than the cumulative N(Z) plots (Z = I/(I)) derived in Chapter 7. Importantly, L
can be evaluated without prior knowledge of the twin law:

s Iobs (hl)_lobs (hz) (8-7)
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One can again plot a cumulative distribution function N(L] and check for

deviations from the expected values for untwinned data. The practical benefit
is that Function 8-7 also delivers a defined curve for perfectly twinned data,
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Figure 8-19 Cumulative probability
distribution N(H) for acentric
reflections. The plot shows the
theoretical curves for acentric data and
the experimental data points. A twinning
ratio e of about 0.26 can be interpolated
from the graph.

Figure 8-20 Yeates-Padilla plot
for the cumulative probability
distribution N(|L|). The graph
shows the expected cumulative
distribution curves for acentric and
centric untwinned data and acentric
experimental data (open circles) for a
perfect twin. For partial twins, deviations
from untwinned data will result in
experimental data points located
between the calculated curves.



